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Abstract
We propose a scheme for entangling two field modes in two high-Q optical
cavities. Using a virtual two-photon process, our scheme provides us a new
kind of nonlinear interaction among the cavity modes that is very different from
the Kerr interaction. Through this interaction maximally entangled states for
the two modes may be achieved. The ideal implementation of our proposal
requires no real population transitions of atomic internal states, hence it is
immune to atomic decay.

PACS numbers: 03.67.−a, 03.67.Mn, 03.65.Yz

(Some figures in this article are in colour only in the electronic version)

Entanglement is one of the most characteristic features of quantum systems and lies at the
heart of the difference between the quantum and classical multi-particle world. It is the
phenomenon that enables quantum information processing and computing [1]. Beyond these
and other related applications, complex entangled states, such as the GHZ triplets of particles
[2], can be used for tests of quantum non-locality [3]. Moreover, the relaxation dynamics of
larger entangled states sheds light on the decoherence process and on the quantum–classical
boundary [4]. There are a lot of proposals devoted to the preparation of quantum entangled
states [2, 3, 5–9], among them the ideas for photon down-conversion process [3], with trapped
ions [6], for cavity quantum electrodynamics [7], with macroscopic objects [8] or for an optical
fibre [9] have been realized experimentally.

In the latter case, the entanglement results from the nonlinear interaction between the two
modes in an optical fibre. This is closely connected with the recent advance of enhancing
nonlinear coupling via the electromagnetically induced transparency (EIT) mechanism [10].
The measured value of the χ(3) parameter is up to six orders of magnitude larger than usual
[11]. This has opened the door for the application of this kind of nonlinear process to quantum
information processing even for the very low photon-number case [12]. In fact, there are
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Figure 1. A four-level atom interacting with two cavity quantum fields. Both cavity fields are
detuned from atomic resonance by � = � − ωi and δ = 2� − ωe .

several proposals for exploiting huge Kerr nonlinearities to perform computation and quantum
teleportation [13, 14] or for quantum non-demolition measurements [15]. Apart from the Kerr
nonlinearity, the experimental achievement of atomic Bose–Einstein condensation (BEC) also
provides us a chance to create many-particle entanglement with nonlinear interaction [16–23].
All these show that the nonlinear interaction between different quantum modes is a valuable
resource for quantum information processing.

In this paper, we present a new theoretical scheme for entangling two quantum modes
in two high-Q optical cavities. Through a virtual two-photon process, an effective nonlinear
interaction between the two modes can be established. This interaction is quite different
from that in the EIT mechanism. By using the virtual two-photon process, our new protocol
significantly reduces the effect of atomic spontaneous emission during the entanglement
preparation process.

Our system consists of two optical cavities as in [24] and an atom system surrounded
by the two optical cavities. The axes of the two cavities are perpendicular to each other; the
internal structure of the atom is depicted in figure 1.

The atom is assumed to make two-photon transitions of frequency ωe between the
nondegenerate state |g〉 with energy ωg = 0 and the excited state |e〉. The transitions are
mediated by two intermediate degenerate levels |i1〉 and |i2〉 (with energy ωi): the frequencies
for transitions |g〉 ←→ |i1〉 (or |i2〉) and |i1〉 (or |i2〉) ←→ |e〉 are � − � and � + � − δ,
respectively. With this notation, the system can be described by

H = h̄�aa
†a + h̄�bb

†b + h̄gc(|g〉〈i1|a† + |i1〉〈e|a† + h.c.)

+ h̄gc(|g〉〈i2|b† + |i2〉〈e|b† + h.c.) + h̄ωi |i1〉〈i1| + h̄ωe|e〉〈e| + h̄ωi |i2〉〈i2| (1)

where a (b) and a† (b†) are the annihilation and creation operators for the cavity mode a (b)

with frequency �a (�b), respectively, gc is the coupling constant of the atom to the cavity
mode a (b) driving the transition |g〉 ←→ |i1〉 or |i1〉 ←→ |e〉 (|g〉 ←→ |i2〉 or |i2〉 ←→ |e〉).
We will not consider the position dependence of the cavity–atom coupling gc(�r), a good
approximation in the Lamb–Dicke limit. For simplicity, we assume �a = �b = � hereafter.
Our scheme works in the following limit: (1) both the cavity modes a and b are strongly
detuned, i.e., � = � − ωi � gc,� � δ and δ � |gc|2/�; and (2) the cavity decay rate
κ � |gc|2/� as required for the high-Q optical cavity. Although the limit of g2

c � �κ with
� the atomic decay rate is a challenging pursuit [25], it could nevertheless be expected to be
reachable with optical cavity QED based systems soon [26]. We will discuss this issue again
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at the end of this paper. Because these transitions |g〉 ←→ |i1〉, |i1〉 ←→ |e〉, |g〉 ←→ |i2〉
and |i2〉 ←→ |e〉 driven by the two cavity modes are far off-resonant, we may adiabatically
eliminate the intermediate states |i1〉 and |i2〉 independently. The Hamiltonian (1) then takes
the following form [27, 28]:

H = h̄ωa†a + h̄ωb†b + h̄λ(|g〉〈e|a†2 + |e〉〈g|a2)

+
ωA

2
(|e〉〈e| − |g〉〈g|) + h̄λ(|g〉〈e|b†2 + |e〉〈g|b2) (2)

with ω = � + 2 |gc|2
�

, � = � − ωi, λ = |gc|2
�

, ωA = ωe − ωg . This is the Hamiltonian
which is broadly used to describe the two-photon process, and has received extensive study
during the last decades, for instance, the experimental realization of a two-photon cascade
micromaser [29], the generation of squeezing amplification [30] and the creation of entangled
states [31]. Our proposal works with a new mechanism different from that by using very high
Kerr coupling. The coupling between the two cavity modes in our protocol, to be discussed
below, results from virtual two-photon processes.

In the limit δ � λ, i.e. (2ω − ωA) � |gc|2/�, the two-photon process is
off-resonance; we may adiabatically eliminate the atom from the system. The Hamiltonian
(2) then takes the following form in the interaction picture:

Heff = h̄
|λ|2
δ

(a†2a2 + b†2b2 + a†2b2 + b†2a2). (3)

In the derivation of the Hamiltonian (3), the atom is initially assumed to be in its ground
state |g〉. The two-mode states will be defined in terms of the usual two-mode Fock states
|m, n〉 = |m〉a ⊗ |n〉b with m (n) photons in mode a (b). First we consider the simple case
where there are only two photons in the mode a while the cavity mode b is initially in vacuum.
The Hamiltonian (3) for this simple case is equivalent to

Heff = 2h̄
|λ|2
δ

(|E〉a〈E| + |E〉b〈E| + σ +
a σ−

b + σ−
a σ +

b

)

with definition |E〉x = |2〉x (x = a, b) and σ±
x is a linear combination of the Pauli operators

for mode x, i.e. σ +(−)
x = 1

2 (σx ± iσy). It shows that after the interaction time T0 = δπ/8|λ|2,
the two cavity modes evolve to a maximal entangled state 1√

2
(|0E〉 + |E0〉) leaving the atom

in its ground state |g〉. We would like to note that the nonlinear interaction term [a†2b2 + h.c.]
is different from the Kerr nonlinear interaction a†2a2 and a†ab†b [32, 33], as the latter is in
the form of the square of the free Hamiltonian, and hence either a†a or b†b is a constant of
motion.

We have performed extensive numerical simulations with the full Hamiltonian (1) and an
initial state |g〉⊗|ψ〉, i.e. the atom is initially in its ground state while the two cavity modes are
in a specific state |ψ〉 (this will be specified later on). Ignoring the atomic spontaneous emission
and the cavity decay, we find the above analytical insights to be completely accurate, i.e. we
indeed get the maximal entangled state (see figure 2). In fact, we find that the approximated
Hamiltonian (3) is quite a good approach to the full Hamiltonian (1).

The top panel in figure 2 shows selected results for the dependence of the population of
state |0, 2〉 (dotted line) and |2, 0〉 (dashed line) on time, while the lower panel displays the
Wootters concurrence which was used to measure the entanglement between the two modes
in Fock states in this case. An initial state |0, 2〉 and system parameters � = 20gc, δ = 5gc

are chosen for this plot. The maximal entangled state may be obtained at time t = (785/gc) s
with perfect fidelity (>99.9%).3 The fidelity is defined as the overlap between the output state

3 Even with currently available parameters of g ∼ (2π)100 (MHz), the time to get a maximally entangled state is
expected to 8 × 10−6 s. For an optical cavity with Q ∼ 109, the photon lifetime is long enough for this protocol.
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Figure 2. Populations of states |0, 2〉 (dotted line) and |2, 0〉 (dashed line), and the Wootters
concurrence versus time; this figure is plotted for the case when the adiabatic limit is satisfied. The
horizontal line in the top panel denotes the probability of the atom being in its ground state |g〉,
regardless of where the photons are.

0 500 1000 1500 2000
0

0.5

1

1.5

Time [1/ g
c
] 

Pr
ob

ab
ilit

y

0 500 1000 1500 2000
0

0.5

1

1.5

2

Time [1/ g
c
] 

En
tro

py

a b 

c 

Figure 3. Top panel: the dependence of the population on states |4, 0〉 (line c), |2, 2〉 (line b) and
|0, 4〉 (line a) on time with initial state |4, 0〉. Bottom panel: the von Neumann entropy versus
time with the same initial state as in the top panel. The constant line in the top panel shows the
population of the atom in the ground state |g〉, which indicates that the two cavity modes are near
perfectly pure states, hence the quantum entropy is a good measure for the entanglement.

and the desired state. We would like to note that the two cavity modes are near perfectly pure
states. This was shown by the horizontal line in the top panel of figure 2, which indicates that
the population of atoms remains unchanged during the whole preparation process.

Similar results are found for the initial state |4, 0〉, illustrated in figure 3. The difference
is that there are three components |4, 0〉, |2, 2〉 and |0, 4〉 in the output state; their populations
are shown in the top panel in figure 3 by c, b and a, respectively. It is interesting to note that
there is a time point(in figure 3, top panel) when line c and line a overlap, which corresponds
to the system in the state 1√

2
(|0, 4〉+ |4, 0〉), and at this point the entropy as plotted in the lower

panel is 1; it equals the entropy of a maximally entangled state for a two-qubit. We would like
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Figure 4. The same results as in figure 2, but for the case where adiabatic elimination of the atomic
levels is not valid.
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Figure 5. The same results as in figure 3, but for the case where adiabatic elimination of the atomic
levels is not valid.

to point out that the Wootters concurrence is not a good measure for the entanglement in this
situation, so we choose the von Neumann entropy instead to quantify the entanglement, which
is the same for figure 7. A recent study on the two entangled modes show that the amount of
entanglement present in a given state depends on how one defines one’s systems [34]. This
means we could redefine our two modes such that the state 1√

2
(|0, 4〉 + |4, 0〉) represents a

maximally entangled state.
It is surprising to find that the same dynamics as in the adiabatic limit persists even when

adiabatic elimination is not valid. As an example, in figures 4 and 5, we display results for
� = 8gc, δ = 3gc. Apparently, the atom as the interaction agent for the two cavity modes is
enough to establish an effective interaction between them. As figure 4 shows, the entanglement
measured as the Wootters concurrence arrives at its maximum at the cross point of lines a and
b (in the top panel) where the modes are maximally entangled. The same feature is found in
figures 5, 6 and 7.
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Figure 6. Populations for states |2, 0〉 (line a) and |0, 2〉 (line b) (top panel), as well as the Wootters
concurrence, with the cavity decay rate κ = 0.01gc and � = 0.3gc; the other parameters chosen
are the same as in figure 4. The arrow in the figure indicates the instant when the modes got
maximally entangled.
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Figure 7. The same as in figure 5, but with the cavity decay rate κ = 0.01gc and � = 0.3gc .
The rapid oscillations appearing on these lines result from the population transfers among atomic
states; these population transfers might be caused by the cavity decay and the diversion from the
adiabatical elimination condition. At time T as indicated in the figures, the two modes would arrive
at maximally entangled states.

Now, we discuss the effects of the dissipation or decoherence due to both the atomic decay
and the cavity loss. As with any proposal for quantum information processing, ultimately its
success depends on being able to complete many coherent dynamics during the decoherence
time. In principle, as long as (a) λ2

δ
� κ and (b) λ2

δ
� �, we could expect essentially the

same results as illustrated in figures 2 and 3. As there are small virtual transitions of atomic
states in our proposal, it makes this scheme immune to the atomic spontaneous emission or
atomic decay, so the restriction (b) makes loss constriction in this scheme. Actually, we can
see this point from the numerical calculation presented in figures 6 and 7. On the other hand,
condition (a) is difficult to achieve because the two-photon process is relatively weak due to
large off-resonant detunings for all its intermediate states. In figures 6 and 7, the effects of
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cavity decay as well as atomic decay on the dynamics of the proposed system is illustrated.
As known, the decoherence time for a state |m, n〉 depends on the total number of photons,
and as figures 6 and 7 show, relative good results are found when the cavity loss rate κ is small
with relatively large atomic decay � = 0.3g.

Finally, we want to stress that the requirement for the intermediate states to be degenerate
is not necessary. In fact, our proposal works in the same manner when the detunings �i defined
by �i = � − ωi have different sign, i.e. �1 = −�2. Although there are many cavity QED-
based quantum computation protocols, the optical cavity with high-Q and an atom with small
decay rate remain challenging because of the technological limit of the Fabry–Perot optical
cavity [35–39]. The initial two-photon Fock state in a cavity mode can be prepared efficiently
by a third-order Raman process [25]. With the same technology, Fock states with higher
photon number can also be reached [25, 40, 41]. In contrast to the flying qubit entanglement,
the two entangled cavity modes have relatively good location, and hence might be used to
distribute entanglement among different nodes in a quantum network. Besides, the entangled
modes could be coupled out of the cavity as an information carrier. This may allow us to
extend quantum cryptography over long distances.

In conclusion, we have proposed a new protocol for preparing the maximally entangled
state in two high-Q optical cavities. As the photons act as the information carrier, a cavity with
very high-Q factor is highly desirable. This proposal works in the same way for one cavity
with two modes, too. We have explained the scheme in terms of the virtual two-photon process
induced nonlinear interaction. A similar idea can be found in [42] where large detunings from
the sideband were used to diminish real populations of the system on the vibrational states, and
hence the scheme is immune to decoherence due to the thermal noise. In addition, our protocol
can also be explained in terms of entanglement distribution by separable states [43]: there a
third particle that is never entangled with the other two was used to entangle the two particles.
In our case the atom would act as the third particle as it was eliminated out of the system
and to this extent it was never entangled with the two modes in the process, instead making
the two modes entangled. This new protocol has the advantage that its ideal implementation
involves no real transitions of atomic states; it makes this proposal immune to the atomic
spontaneous emission or atomic decay. It is easy to map our model to an ion trap setup, where
the trapped ion takes the role of the atom while their collective vibrational modes (say along
the x- and y-axes) play the role of the two cavity modes. The long-lived vibrational quanta
met the requirement of the protocol very well. In addition, this protocol provided a new kind
of nonlinear interaction among the cavity modes, which might be useful for people interested
in cavity-QED system.
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